EGC220 Class Notes 4/14/2023

Baback Izadi

Division of Engineering Programs
bai@engr.newpaltz.edu

Test 2 will cover the following topics

- Design of combinational circuits
- Circuit conversion to all NAND or NOR gates
- Design and use of
- Multiplexers
- Demultiplexers
- Decoders
- Encoders
- Design of combinational circuits using PLD's
- Latch and flip flops characteristics and timing.
- Design of ripple counters
- Analysis of sequential circuits

Synchronous Circuit

How do we determine its functionality?

(Flip Flops) Vs. Latccies

- Flip flops are Edge Triggered
- Latches are triggered

(b) $S R$ Flip-Flop

\mathbf{J}	\mathbf{K}	$\boldsymbol{Q}(\boldsymbol{t}+\mathbf{1})$	Operation
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$Q(t)$	Complement

Triggered JK

Triggered JK

Triggered JK

Flip Flops Vs. Lqtehes

- Flip flops are Edge Triggered
- taiches are revelliggered
(c) D Flip-Flop
D $\quad Q(t+1) \quad$ Operation
(d) T Flip-Flop
$T \quad Q(t+1) \quad$ Operation

$Q(t)$	No change
$\bar{Q}(t)$	Complement

Analysis of Sequential Circuits

- Analysis Procedure:
- Obtain flip-flop input equations
- Write down characteristic table of each type of flip-flop in use
Develop state table
- Obtain state diagram

Example \#1:

dacs not depend on aror 飞 clk.

Step 1: Flip-flop input equations and output equation
$J_{A}=X$
$\mathbf{K}_{\mathbf{A}}=\overline{\mathbf{Q}_{\mathbf{B}} \oplus \mathbf{X}}=Q_{B} \supseteq X$
$J_{B}=Q_{A} X^{\text {© }}$
$K_{B}=\mathbf{Q}_{\mathrm{A}} \mathbf{X}$

Step 2: Characteristic Table
Step 3: State Table

Example \#2:

x : systemingut $z:$ system output

Step 1: Flip-flop input equations and output equation
$S_{A}=\left(Q_{A}+X^{\prime}\right)^{\prime}=Q^{\prime}{ }_{A} \mathbf{X}$
$R_{A}=Q_{A} Q_{B} X+Q_{B}{ }_{B} X^{\prime}$
$S_{B}=Q_{B}{ }_{B} \mathbf{X}$
$R_{B}=Q_{B} X^{\prime}$
$\mathbf{Z}=\mathbf{Q}_{\mathbf{A}} \mathbf{Q}^{\prime}{ }_{\mathbf{B}} \mathbf{X}^{\mathbf{\prime}}$

Problem 1

Analyze the following sequential circuits leading to a state diagram.

$$
\begin{aligned}
& J_{A}=K_{K}=Q_{B} Q_{C} X+\bar{Q}_{B} \bar{Q}_{C} \bar{X} J \\
& J_{B}=K_{B}=x \cdot Q_{C}=\overline{Q_{C}} \mathbb{Q}_{X} \\
& J c=k_{c}=1 \quad \Rightarrow \overline{Q B} Q_{A} \\
& z=\overline{\overline{Q B} Q_{A} \rightarrow Q_{B}} \\
& { }_{a_{c}}^{Q_{B}}=\square \square \\
& J \quad K \quad Q(t+1) \\
& \begin{array}{ccc}
\hline & & \\
\hline 0 & 0 & Q(t) \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & Q(t) \\
& 1 & \\
& &
\end{array} \\
& Q_{B}+\overline{Q_{A}}
\end{aligned}
$$

Problem 2

Analyze the following sequential circuits leading to a state diagram.

Problem 3
Analyze the following circuit leading to its state diagram.

Data flow assign \rightarrow equation behan. $\left.\begin{array}{c}\text { describeckT } \\ \text { case }(x, \pi, x) \\ \downarrow\end{array}\right\}$

