EGC220 Class Notes 4/14/2023

Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu

Test 2 will cover the following topics

- Design of combinational circuits
 - Circuit conversion to all NAND or NOR gates
- Design and use of
 - Multiplexers
 - Demultiplexers
 - Decoders
 - Encoders
- Design of combinational circuits using PLD's
- Latch and flip flops characteristics and timing.
- Design of ripple counters
- Analysis of sequential circuits

Flip Flops Vs. Latches

Flip flops are Edge Triggered

Latches are level triggered.

only use F/F Por design & analysis

	(a) <i>JK</i> Flip-Flop				(b) SR Flip-Flop		
J	К	Q (t +1)	Operation	S	R	Q (t + 1)	Operation
0	0	Q(t)	No change	0	0	Q(t)	No change
0	1	0	Reset	0	1	0	Reset
1	0	1	Set	1	0	1	Set
1	1	$\overline{Q}(t)$	Complement	1	1	?	Undefined
				Γ			

☐ Triggered JK

Flip Flops Vs. Latches

Flip flops are Edge Triggered

- Latches are level lriggered

Analysis of Sequential Circuits

Analysis Procedure:

- Obtain flip-flop input equations
- Write down characteristic table of each type of flip-flop in use
- Develop state table
- Obtain state diagram

Step 1: Flip-flop input equations and output equation

 $J_{A} = X$ $K_{A} = \overline{Q_{B} \oplus X} = Q_{B} \odot X$ $J_{B} = Q_{A}X^{\prime}$

 $\mathbf{K}_{\mathbf{B}} = \mathbf{Q}_{\mathbf{A}} \mathbf{X}$

JK

0 0

Step 2: Characteristic Table

Q(t+1)

Q(t

Q'(t)

Ste	p 3: State Table	
s and	PS FIFINDUTS NS	
	Q _A Q _B X J _A K _A J _B K _B Q _A Q _B	
	011 1 - 1 0 0 11	
Step 4	State Diagram	
)
(PAQ13		
1 (
	0 N	
	(01) 0	

Problem 1

Analyze the following sequential circuits leading to a state diagram.

Data Blow equation assign -> equation behav. describe CKT ZE ase (x, x, x) Z ECIR